Editorial: “Transcellular Cycles Underlying Neurotransmission”
نویسندگان
چکیده
Neuronal action potentials and neurotransmitter releases induce important alterations in the extracellular millieu, including increased K concentrations from membrane repolarization and increased neurotransmitter levels from trans-synaptic signaling (1, 2). It becomes crucial then to remove, fast and efficiently, these ionic and neurotransmitter surges and to prepare the synapsis for a new neurotransmission event (3). In parallel, the energy demands of these metabolic movements must be fulfilled from substrates, such as glucose and lactate, obtained from cerebrovascular supplies (4, 5). Surrounding astrocytes coordinate all these tasks, playing a central role during neurotransmission, many times operating intercellularly as astrocytic networks (6, 7). Summarizing, the adequate operation of neurotransmission requires the transcellular coupling of neuronal and astrocytic metabolisms to a suitable supply of metabolic substrates from the microvasculature. Pathological alterations in these processes underlie the most morbid and prevalent neurological disorders, including ischemic or traumatic episodes and neurodegeneration. Despite enormous progress in our understanding of neurotransmission during the last decades, important questions remain insufficiently explored including the quantitative assessment of transcellular cycles of glutamate, glutamine, and GABA supporting glutamatergic or gabaergic neurotransmissions, the preferred metabolic substrates, as glucose and/or lactate, supporting the energy demands under resting or stimulated conditions, and the mechanisms underlying neurovascular coupling. In addition, the important question on how all these processes occur and integrate under the in vivo situation reaches, in this context, vital relevance. Recently, a variety of non-invasive approaches have allowed the investigation of these aspects in vivo (8), outstandingly, those involving functional magnetic resonance imaging and 13Cmagnetic resonance spectroscopy methods. The following e-book entitled “Transcellular Cycles Underlying Neurotransmission” provides an authoritative overview of these issues, compiling contributions from leading scientists in this field. In the study of neuroglial interactions in vivo, Rodrigues et al. (9) provide a convenient introduction to the fundamentals of 13C NMR spectroscopy and its applications to cerebral energy metabolism, Duarte et al. (10) report on the compartmentalized metabolism of (1,6-C2) glucose in the brain in vivo, Shen (11) reviews the mathematical modeling strategies used to simulate quantitatively the operation glutamate–glutamine cycle in vivo, and Sampol et al. (12) address the metabolism of glucose and lactate in the stimulated, awake, rat brain. Similarly, Bartnick-Olson et al. (13) illustrate the use of 13CNMR to evaluate the altered neuroglial interactions in response to traumatic brain injury. The neurophysiological, metabolic, and cellular compartmentation events underlying functional neuroimaging by MRI are discussed by Moreno et al. (14), while Lizarbe et al. (15) cover the use of different MRI andMRS strategies to evaluate the ionic responses during hypothalamic activation by appetite stimulation. The role of astrocytic metabolic networks in metabolic coupling is discussed
منابع مشابه
Structure and Biomechanics of the Endothelial Transcellular Circumferential Invasion Array in Tumor Invasion
Cancer cells breach the endothelium not only through cell-cell junctions but also via individual endothelial cells (ECs), or transcellular invasion. The underlying EC forms a circular structure around the transcellular invasion pore that is dependent on myosin light chain kinase (MLCK) and myosin II regulatory light chain (RLC) phosphorylation. Here we offer mechanistic insights into transcellu...
متن کاملIncreased Mesohippocampal Dopaminergic Activity and Improved Depression-Like Behaviors in Maternally Separated Rats Following Repeated Fasting/Refeeding Cycles
We have previously reported that rats that experienced 3 h of daily maternal separation during the first 2 weeks of birth (MS) showed binge-like eating behaviors with increased activity of the hypothalamic-pituitary-adrenal axis when they were subjected to fasting/refeeding cycles repeatedly. In this study, we have examined the psychoemotional behaviors of MS rats on the fasting/refeeding cycle...
متن کاملMyosin light chain kinase mediates transcellular intravasation of breast cancer cells through the underlying endothelial cells: a three-dimensional FRET study.
The transient and localized signaling events between invasive breast cancer cells and the underlying endothelial cells have remained poorly characterized. We report a novel approach integrating vascular engineering with three-dimensional time-lapse fluorescence resonance energy transfer (FRET) imaging to dissect how endothelial myosin light chain kinase (MLCK) is modulated during tumor intravas...
متن کاملThe mechanisms underlying the generation of the colonic migrating motor complex in both wild-type and nNOS knockout mice.
Colonic migrating motor complexes (CMMCs) propel fecal contents and are altered in diseased states, including slow-transit constipation. However, the mechanisms underlying the CMMCs are controversial because it has been proposed that disinhibition (turning off of inhibitory neurotransmission) or excitatory nerve activity generate the CMMC. Therefore, our aims were to reexamine the mechanisms un...
متن کاملMonetary Shocks, Agency Costs and Business Cycles
Working papers of the Federal Reserve Bank of Cleveland are preliminary materials circulated to stimulate discussion and critical comment on research in progress. They may not have been subject to the formal editorial review accorded official Federal Reserve Bank of Cleveland publications. The views stated herein are those of the authors and are not necessarily those of the Federal Reserve Bank...
متن کامل